Welcome to HTT Lab

Actually it is just in an idea when feel oneslf can achieve and cannot achieve.

曾筱珽 Hsiao-Ting Tseng

國立中央大學資訊管理學系 助理教授

Academic

國立交通大學 資訊管理與財務金融學系 博士

Experience

● 國立中央大學資訊管理學系 助理教授

● 國立聯合大學 資訊管理學系 助理教授

● 大同大學 資訊經營學系 助理教授

● 國立清華大學 學習評鑑中心 資訊專員

● 信統電產股份有限公司研發中心 研發工程師

Research Domain

醫療資訊管理、決策支援系統、社會網路分析、資料科學

Contact Information

● httseng@mgt.ncu.edu.tw

● I1-906 (03)422-7151 # 66122

Exploiting organizations' innovation performance via big data analytics: an absorption knowledge perspective. Information Technology & People

HT Tseng, S. Jia, TM Nisar, N Hajli (2023)

Applying deep learning to predict SST variation and tropical cyclone patterns that influence coral blenching. Ecological Informatics

YC Lin, SN Feng, CY Lai, HT Tseng (2023)

Automatic Speaker Positioning in Meetings Based on YOLO and TDOA. Sensors 23 (14)

CC Hsieh, MR Lu, HT Tseng (2023)

Deep learning based text detection using resnet for feature extraction. Multimedia Tools and Applications

LK Huang, HT Tseng, CC Hsieh, CS Yang (2023)

Shaping path of trust: the role of information credibility, social support, information sharing and perceived privacy risk in social commerce. Information Technology & People

HT Tseng (2023)

Customer-centered data power: Sensing and responding capability in big data analytics. Journal of Business Research

HT Tseng (2023)

The Moderation Role of AI-Enabled Service Quality on the Attitude Toward Fitness Apps. Journal of Global Information Manageement (JGIM)

HT Tseng, CL Lo, CC Chen (2023)

本課程專為資訊管理背景的研究生設計,旨在幫助他們獲得行銷管理的專業知識和實踐經驗,結合資訊管理專長以提升綜合能力。同學們將透過深入學習行銷理論與實務,理解行銷的基本概念、理論和策略,並靈活應用於實際商業情境。課程中將強調學習整合應用現代數位行銷工具和資訊管理核心技術,以提升在現代行銷環境中的競爭力。透過案例研究和實踐活動,培養同學們的創新能力和批判性思維,使其能在面對挑戰時提出創新解決方案。

Social network analysis is one of the most ideal ways of data-oriented to understand network society social phenomena. The objectives of this course are: (1) to discover how social networks and human dynamics create social systems and recognizable patterns (2) to transform data for analysis using graph-based and statistics-based social network measures; (3) to visualize network data using different methods and packages; (4) to apply node and group level social network measures; (5) to build and test network models at the nodal, dyadic and network levels; (6) to choose among social network designs based on research goals; (7) to examine social networks analysis using case studies.